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ABSTRACT  

 
Redblade is a multi-functional autonomous robot with two 
seasonal configurations which allow it to plow snow in the 
winter and mow grass in the summer.  We are currently on 
the 6th generation of the Redblade platform which is an 
updated version of last year's platform with completely 

redesigned software, four-wheel drive, obstacle avoidance, 
and new navigation algorithms.  This report presents the 
design and implementation of the Redblade mechanical 
platform, sensor components, software architecture, control 
algorithm, and safety systems. 
 
INTRODUCTION  

 
Autonomous robots capable of performing many functions 
with accuracy and reliability in a timely manner are highly 
desired in modern society.  Redblade is designed as an 
expandable host to perform in multiple roles.  It represents 
the next stage evolution of a multi-functional autonomous 
robot since it is able to compete in both autonomous 
snowplowing during the ION Autonomous Snowplow 
Competition[1], autonomous lawn mowing during the ION 
Robotic Lawn Mower Competition[2], and autonomous 
navigation in the Intelligent Ground Vehicle Competition[3].  
Redblade has been competing since the inception of both 
ION competitions starting with the ION Robotic Lawn 
Mower Competition in 2004 followed by the ION 
Autonomous Snowplow Competition in 2011.  This paper 
describes Redblade’s mechanical platform, sensor 
electronics, software architecture, control algorithms, and 
safety mechanisms that make autonomous operation possible, 
specifically focusing on the snowplowing application. 
Redblade's objective is to compete and win the 4th Annual 
Autonomous Snowplow Competition.  
 
More information, pictures, videos, and news articles can be 
found at www.muredblade.com[4].   
 
  



 

TOP LEVEL REQUIREMENTS 

 
An important step in engineering design is defining the top 
level requirements for the system being developed.  This 
ensures that each necessary function that a system must 
perform is given the appropriate amount of consideration.   
 
Table 1 presents a summary of the top level requirements for 
Redblade. 
 

Requirement 
Specification 

Component Used Component 
Accuracy 

Position Accuracy:  
< 15 cm 

Topcon: 
HiPer Lite Plus 

DGPS 

MicroStrain: 
3DM-GX3-25 

US Digital:  
E7P wheel encoders 

Static: 3mm 
horizontal 

RTK: 10mm 
Heading Accuracy:  

< 5o/min 
Static: ± 0.5° 
Dynamic: ± 2.0° 

Obstacle pos. 
accuracy: 
< 0.5 m 

SICK:  

LMS-200 Lidar 

100o field of 
vision, 0.25o 
increments 

Top speed: 
 1.5 m/s 

RoboteQ:  
AX2850 

NPC Robotics:  
NPC-B81HT 

Velocity 
Resolution: 
14.25mm/s 
 

Vehicle 
Dimensions:  

< 2 m 

80/20 aluminum bar: 
In-house 

 
N/A 

E-Stop Distance:  
< 1m 

Mechanical Platform: 
In-house 

Test results: 
<0.5m 

Table 1: Summary table detailing the top-level requirements for the 
accuracy of each component. 
 
Additional requirements include the need for a higher amp-
hour power supply, a dependable mechanical platform, 
enhanced control algorithm, and a CPU capable of handling 
an intense computational burden.  These are discussed later 
in the report. 
 
SNOWPLOW VEHICLE DESIGN 

 
This section describes the overall mechanical design of 
Redblade.  We will discuss plowing strategy, mechanical 
design, navigation system design, guidance system design, 
control system design, software design, and system 
integration. 
 

A. PLOWING STRATEGY 

 
We have implemented two different plowing strategies that 
take advantage of our new platform’s strengths; one strategy 
for the single straight ‘I’-shape and another for the triple 
straight ‘I’-shape’. With four wheel drive our lateral traction 
has improved significantly and there is now a very small risk 
of the robot sliding from a lateral force on the front of the 

plow at the competition depth of 5-10cm of snow. Thanks to 
this improved traction we don’t have to rely as much on our 
PID correcting for very large heading errors and we can 
angle the plow more steeply to push snow more efficiently. 
However, even with 7.72 horsepower from our new NPC 
motors[5], it is possible that plowing too much snow at once 
can cause the robot drift radically off-path, which is difficult 
to correct for. Breaking up our strategy into several passes 
will reduce the strain on the control algorithm. 
 
Before the robot can move, we survey the corners of 
whichever field we are currently on and record these points 
in latitude & longitude. These points are then converted to an 
ENU local coordinate system using the bottom right corner 
point of Figure 1 as the (0,0) point (our convention, we could 
use any corner point). Based on the corner points, waypoints 
for the robot are calculated and generated within the 
boundaries of the surveyed field. 
 
For the single straight ‘I’-shape path a two-pass strategy is 
preferred because it halves the load that the motors have to 
push, reducing the possibility of wheels sliding. On each pass 
we align the inside edge of the robot over the center line to 
ensure that no snow is left behind. Depending on wet or icy 
conditions, the robot can be programmed to make more 
passes by joining the original path at the “Merge Point”, seen 
in Figure 1, in order to ensure all snow is completely 
removed at the cost of additional time.  
 
 

         
Figure 1: Single straight ‘I’-shape two-pass plowing strategy (left), Triple 
straight ‘I’-shape four-pass plowing strategy (right). 
 
In order to avoid the obstacle in the snow field temporary 
waypoints are added to the front of the waypoint queue that 
plow around the pole. These waypoints are added whenever 
the obstacle is detected to be in the path between the previous 
waypoint and the next waypoint 

 



 

Similar to our first strategy, for the triple straight ‘I’-shape 
path we have chosen a solution to reduce the load of snow 
that has to be pushed by implementing a four-pass plowing 
strategy, shown in Figure 1. Through our testing, we have 
decided to start plowing from the outside and working our 
way towards the middle so the robot pushes a manageable 
amount of snow each time. 
 

B. SNOWPLOW VEHICLE DESIGN 

 
Redblade’s mechanical platform consists of four snow-style 
drive wheels for traction in the front and rear, and an 
aluminum chassis with polycarbonate paneling that houses 
the electrical systems.  An overview of the mechanical 
platform can be seen in Figures 2 and 3. 
 
The primary material that was used for the chassis is 80/20 
aluminum bar.  It was chosen for its ease of construction and 
the large amount of available mounting materials[6].  Plate 
steel was used to mount the plow and electric motors due to 
the need for increased strength.  Clear polycarbonate 
surrounds the chassis to protect the electrical components 
from the outside environment and allows us to easily 
diagnose problems.  
 

 
Figure 2: Side profile of Redblade with dimensions shown. 
 
 

 
Figure 3: Bottom profile of Redblade with dimensions shown. 
 
This year's major changes include an upgrade to the chassis 
to accommodate an additional set of motors.  The robot is 
now driven by four NPC 24 volt electric high torque motors 
with 24:1 reduction gearboxes that can each pull up to 60 
amps continuously. This upgrade to four-wheel-drive skid 
steering gives the robot much needed traction when pushing a 
heavy snow load in icy conditions. 
 

The robot has a total of six 12 volt, 32 amp-hour gel-cell 
batteries [7]. Two sets are wired in series to make 24 volt sets 
used to power the drive motors. An extra set of fully charged 
batteries is always on hand and can be quickly swapped out 
using PowerWerx[8] quick disconnects. The last two 12 volt 
batteries are wired in parallel for a total of 64 amp-hours and 
are used to power the computer, router, safety system, etc. 
Figure 4 shows the wiring diagram for Redblade's electrical 
system. 
 

 
Figure 4: Wiring diagram for the Redblade power system. Note: does not 
reflect duplicate circuits for second set of motors.  
 

C. NAVIGATION SYSTEM DESIGN 

 
A MicroStrain 3DM-GX3-25 IMU[9] is used to determine the 
vehicle heading.  It has an adjustable data rate to facilitate 
interfacing with different clients.  Redblade does not use a 
magnetically corrected heading that is offered by this sensor.  
This IMU was shown to accumulate approximately 0.1o of 
error for every minute of polling time.  
  
The HiPer Lite Plus system is a survey grade dual-frequency 
differential GPS receiver system by Topcon[10]. Field tests of 
the HiPer Lite Plus near Miami’s Engineering Building with 
masking angle at 30o on one side of the sky shows location 
accuracy within 2cm as specified by the device manufacturer. 
The raw geodetic coordinates given by the HiPer Lite Plus 
receiver are converted to an ENU local coordinate system 
before being sent to the control algorithm.  The origin of the 
local coordinate system is in the bottom right corner of 
Figure 1, while the robot’s initial heading points to the local 
y-axis.  
 
Four US Digital E7MS quadrature optical encoders[11] were 
installed all four wheel on the vehicle. Each encoder sends its 
signal on two different channels with 90 degree offset.  By 



 
 

using two channels it is possible to determine the direction of 
movement if there is no slippage. However there is always 
slippage in a skid-steer design and our method for correcting 
for this is described later on.  When the robot is moving 
forward, one channel emits a pulse before the other.  The 
RoboteQ AX2580[12] motor controller uses these encoders in 
its internal feedback loop to ensure consistent speeds on both 
motors. 
 
Each sensor may provide inaccurate data depending on the 
condition of the robot.  This is discussed in more detail in the 
Systems Integration and Failure Modes & Recovery Actions 
sections.  
 

D. GUIDANCE SYSTEM DESIGN 

 
Our path plan is generated as soon as we survey the field and 
convert those survey points into ENU frame. A set of 7 

waypoints is generated for the single-I path plan, and 14 for 
the triple-I. These points are created based on the 
measurements of the snow field given in the ASC 2014 
rulebook and the dimensions of our robot so that it does not 
run out of bounds. Once all of these points are created, they 
are multiplied by a rotation matrix based on the difference in 
the angle of the field to ENU to put them in the ENU 
coordinate frame. The robot will repeatedly run through all of 
these waypoints for any number of iterations depending on 
how clean we want to make the snowfield and how much 
time we want to spend. 
 
For obstacle detection, we use a SICK Laser Measurement 
Sensor (LMS) 200 also known as a LIght Detection And 
Ranging (LIDAR) sensor[13]. The LMS 200 is an extremely 
accurate 2D distance measurement sensor that can be 
interfaced over RS-232 or RS-422. This sensor works by 
beaming out a fan of eye-safe laser light off a rotating mirror 
and any object that breaks the fan will reflect the laser light 
back to the sensor, which can be calculated into a distance 
measurement based on the time it takes to come back to the 
sensor. The LMS 200 has both a 'mm mode' where it gets 
back distance measurements in millimeters (with a detection 
range of up to 8.181 meters) and 'cm mode' where it gets 
back distance measurements in centimeters (with a detection 
range of up to 81.91 meters). It also has the ability of 
scanning angular range of 100° with angular resolutions of 
1°, 0.5°, and 0.25° (shown in Figure 5 below) and angular 
range of 180° with angular resolutions of 1° and 0.5°. The 
LMS 200 has a scanning frequency of 75 Hz and response 
time of 13-53 ms. The distance measurements from testing 
have a systematic error of +/- 15mm and statistical error (1 
sigma) of 5 mm. 

 
Figure 5: Measurement range 40° to 140° (view is from above, scan happens 
from right to left) 

 
For our setup, we are in 'mm mode' using an angular range of 
100° with an angular resolution of 0.25°, which gets us 100° 
vision of obstacles in front of our robot with a total of 401 
different millimeter range measurements of obstacles less 
than 8.181 meters away from the sensor. 
 
As the robot moves between waypoints it performs a 
calculation using Lidar range measurements to detect if its 
trajectory will intersect with radius R2 around the estimated 
position of the obstacle, seen in Figure 6. If the robot detects 
that its path will cross this area it creates four temporary 
waypoints that lie on the edges of the R1 and R2 circles. R1 
is equal to half of the length of the robot plus a small buffer 
and R2 is equal to half of the width of the robot plus a small 
buffer. Usually point 2 is set to the right side of the pole 
because our plow angle performs better on that side, but it 
can either be set to either side if the other point would send 
the robot out of bounds. 
 

 
Figure 6: Generation of temporary waypoints to avoid obstacle 
 
As long as the estimated position still lies within the path the 
first point will continually update with incoming position 
estimates. After reaching the first point the other two 
avoidance points are locked in and the robot travels to both of 
them before resuming a normal route. If the estimated 
position of the pole moves out of the path before it reaches 
the first temporary waypoint then it will resume its normal 
route.  
 
 

E. CONTROL SYSTEM DESIGN 

 
Redblade uses a PID control algorithm for navigation 
between waypoints [14].  This algorithm adjusts wheel speeds 
based on present and past errors.  We have two methods of 



 

defining the “error” of our robot.  The first method drives 
heading error to zero and the second drives the distance from 
a line to zero.  We are in the process of evaluating the 
performance of both approaches. 
 
The PID algorithm starts by accepting a waypoint vector as 
its input.  This waypoint (xd, yd) will be the destination 
waypoint for this method. (x0, y0) is the starting point.  Both 
of these waypoints are defined in a local ENU reference 
frame with the origin being where our robot began.  At any 
point during its travel between these two waypoints, its 
position (x, y) can be found with the GPS, and its heading 
(ϴ0) can be found with the IMU.  Using this current position 
(x, y) and the destination (xd, yd), the desired heading (ϴd) 
can be calculated using equation (1): 

 
(1)1) 

 
The difference between ϴd and ϴ0 serves as the error input to 
the PID loop.  When the KP, KI, and KD coefficients are 
selected correctly, they create a signal which drives the 
motors and minimizes this error.  Figure 7 shows a diagram 
of this error. 
 

 
Figure 7: Diagram of how the PID error in heading is calculated. 
 
The GPS error and IMU error are added together and are the 
input to the PID loop as shown in Figure 8. 
 

 
Figure 8: PID feedback loop using the first method that drives the heading 
error to zero. 
 
In order to tune our PID we used the Ziegler Nichols method. 
To perform this heuristic first the I and D gains are set to 
zero, and then the proportional gain must be increased in 
small increments until the robot’s path oscillates constantly 
before becoming unstable. Using that gain value (KU) and the 
period of oscillation (TU) we were then able to use the 
following equations to find our KP, KI, and KD values: 

 
KP = 0.6 * KU    (2) 

KI = 2 * KP / TU    (3) 

KD = 0.125 * KP * TU   (4) 

 

We considered tuning the PID manually by writing a 
simulator, but ultimately felt that it would be too time-
consuming since the Ziegler Nichols method already worked 
very well even though it’s not an optimal solution.  
 

F. PROCESSOR & SOFTWARE DESIGN 

 
All system processes are controlled by the onboard PC 
running a Linux installation.  Communication with this 
device is accomplished via direct connection or through an 
on-board wireless router.  A processor capable of handling a 
high computational load is needed.  Figure 9 shows the 
resulting computer platform.  Table 2 details the platforms 
specifications. 
 

 
Figure 9: Redblade's computer platform in its housing.  This housing can be 
easily removed from the vehicle if necessary. 
 
Component Manufacturer  Performance 

CPU Intel i7-2600K 3.4GHz quad-core 
Memory Corsair XMS 4GB 
Solid-State 
Drive 

Intel 320 Series 80GB 

Table 2: Computer platform specifications. 
 
Because Redblade was required to function in a vast range of 
environments, weather-proofing was required to ensure safe 
and reliable operation.  A standard hard drive contains 
components that are likely to freeze in low temperatures.  
Redblade uses a solid-state drive (SSD) to mitigate this risk. 
In addition to having better temperature endurance, the SSD 
is able to withstand much higher degrees of vibration and 
impact.  Power consumption is reduced 85% from 
approximately 20 Watts to no more than 1.7 Watts.  
 
The software is mostly written in C or C++ for speed, 
although there are some small scripts written in Python that 
are not computationally expensive, as well as some testing 
scripts in Matlab.  
 
One of the largest changes to Redblade this year was the 
introduction of the Robot Operating System (ROS), which is 



 

designed specifically for managing data passing between 
varying collections of sensors in a robotics system. All 
measurements are taken from sensors by their respective 
drivers which time-stamp and publish that data in different 
buffers called topics. Processes that need to read these 
measurements can subscribe to these topics and grab the most 
recent sensor measurement at any given instant in time. The 
abilities to communicate easily between any process and 
synchronize sensor measurements allow our solutions to be 
much more accurate. A visual representation of this 
procedure is shown in Figure 10. 
 

 
Figure 10: System flow chart demonstrating how messages are passed 
between software modules and hardware components. 
 
ROS provides suites like rviz for real-time visualization of 
sensor data, which we use for viewing and quickly debugging 
Lidar data. Tools like ros-bags are available for easily 
recording data from any number of sensors that you can 
“replay” in order to test multiple algorithms on the same set 
of real-world data. 
 

G. SYSTEM INTEGRATION 

 
Redblade features a three-layer system architecture that is 
abstracted in Figure 11.  The top layer is the navigation and 
obstacle avoidance sensor suite.  The current generation of 
the Redblade navigation sensor suite includes a Topcon 
HiPer Lite Plus GPS receiver, a MicroStrain 3DM-GX3-25 
inertial sensor, and four optical wheel encoders as part of the 
integrated motor drive system.  

 
 
Figure 11: Three layer system architecture abstraction.  Note that the remote 
monitoring and control is optional.  The latter is disabled during autonomous 
operation. 

 
The middle layer is the collection of software that provides 
driver functions for the sensors, sensor fusion algorithms, 
path planning, and vehicle motion control algorithm.  The 
bottom layer is the mechanical platform, electronics 
hardware, including the motor controller, safety systems, 
power supplies, and processors that carry out the software 
functions.  
 
Redblade utilizes the three navigation sensors (GPS, IMU, 
and optical wheel encoder) to determine its position, heading, 
and velocity (PHV).  The vehicles PHV information along 
with its predetermined destinations are processed by an on-
board computer that implements an Extended Kalman Filter 
to improve our PHV before giving the information to the 
Proportional-Integral-Derivative (PID) control algorithm to 
adjust vehicle heading.  
 
Sensors like the IMU and wheel encoders have very fast 
update rates, but they are not very accurate by themselves.  
For instance, the heading reported by the IMU will drift over 
long periods of time, about 2o per minute.  In order to make 
the best of all of the sensor measurements to obtain an 
accurate estimate of the current position and the positions of 
the surrounding obstacles, an extended Kalman Filter is used.  
The idea behind an EKF is to model the error of different 
information sources and combine readings from these sensors 
to obtain a better estimate of the orientation and position then 
given by any of the individual sensors. 
 
The Kalman filter contains two main parts: a dynamics model 
and a measurement model.  The dynamics model can model 
the position and error covariance of the robot’s physical 
position in the absence of sensor measurements.  For our 
platform, this model gives information about x and position 
in addition to x and y velocity, heading, angular velocity, 
angular acceleration and IMU drift bias.  The IMU is known 
to have an error bias that accumulates over time and in order 
to properly model this sensor, its error bias needs to be 
included in to the dynamics model.  The overall dynamics 
model can be formulated as the following set of linear 
equations 
 

                   (5) 
 
   is the current state of the robot,    is a matrix of 
coefficients that relate the current state of the robot to the 
past state of the robot.     is the control input which includes 
motor speeds and,    is a matrix of coefficients that relate the 
current state of the robot to the control inputs.    is a random 
white Gaussian vector with a known covariance representing 
the noise in the robot’s environment. 
 
The measurement model gives information about reliable the 
sensor readings are.  For our platform, we have three 
different measurement equations –one for the IMU, wheel 
encoder and GPS measurements.  Since the measurement 



 
 

equations for GPS and IMU are nonlinear, a linear 
approximation must be made for these sensor measurements 
– a common technique used in the Extended Kalman Filter. 
The overall measurement model can be represented by the 
following set of linear equations. 
 

               (6) 
 

   is the current set of measurements and     is the a matrix 
of coefficients that relate the current robots state to the 
current set of measurements.     is a random white Gaussian 
vector with a known covariance representing the noise in the 
sensors measurements.   
 
Using the dynamics and sensor models, the propagation 
equations can be readily applied as follows: 
 

 ̂ 
 

    ̂   
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Where  ̂ 

  signifies the estimate of the current robot’s state 
without measurements,  ̂ 

 
 is the error covariance 

representing the uncertainty involved in estimating the robots 
current state and   is the covariance of the   .  These 
propagation equations are critical for calculating the 
estimated position and uncertainty in the absence of 
measurements.  The presence of measurements, the update 
equations can be applied as follows: 
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     (11) 
 

Where  ̂ 
 denotes the robot’s state and  ̂ 

 
denotes the robots 

uncertainty after an update.  It has been shown that this 
newly update readings always improve upon existing sensor 
readings. 
 
 
SAFETY SYSTEM 

 
The safety system ensures that the robot ceases operation and 
comes to a complete stop within 3 meters.  The emergency 
safety system on Redblade stops all motion in approximately 
0.5 seconds and in less than 1.5 meters.  This was in worst 
case testing from full speed to a complete stop on an icy 
surface. It is accomplished by engaging one of three 
emergency kill switches.  Two physical kill switches reside 
on either end of the vehicle, while the third switch is a remote 
handled by the user.  The safety system circuitry is shown in 
Figure 12.  Note that the switches are wired in series to allow 
a single switch to cause a complete stop of all motion. 
 

 
Figure 12: Circuit diagram of Redblade's safety system. 
 
FAILURE MODES & RECOVERY ACTIONS 

 
This section will describe the failure modes and recovery 
actions that may arise during vehicle operation.  Each mode 
and the corresponding recovery action is identified and 
explained below.  
 

A. DENIED GPS SOLUTION 

 
The high masking angle of buildings surrounding the 
competition site is potentially hazardous to the DGPS system.  
Poor DOPs and the higher multipath of the environment can 
cause the receiver to lose carrier phase lock on one or more 
satellites.  This can compromise the expected centimeter 
level accuracy of the system.   
 
To solve this problem, the EKF will discard any GPS 
measurements that exceed the covariance we set and rely 
solely on measurements from the wheel encoders and IMU to 
get a relative position until the GPS is picked back up again.  
The number of clicks received from the wheel encoders can 
be directly translated into distance.  Our algorithm receives a 
reading from our left and right wheel encoders at 5 Hz and 
uses the following formulas to calculate position in our ENU 
reference frame.  The heading used is the heading measured 
by our IMU. 
 
Dist_Traveled = (leftDistance+rightDistance)/2      (12) 
newEastPosition+= Dist_Traveled *sin(heading)     (13) 
newNorthPosition+= Dist_Traveled *cos(heading) (14) 
 
Since this is a relative positioning solution, errors compound 
over time. Through tests where we denied the GPS position 
to the EKF for periods of up to ten seconds we found the 
error from our estimate to the true position to be typically 
less than 0.5 m during a GPS outage. This error isn’t large 
enough to cause any significant problems with our robot’s 
navigation and it is unlikely we will be denied GPS for so 
long.  Figure 13 shows a graph of the position of the robot 
along an arbitrary run.  Figure 14 shows the error of the 
odometry-calculated position along that run.  The largest 
error is no more than 0.7 meters. 
 



 

 
Figure 13: Plot of the GPS position versus the odometry position along a 
run where GPS solutions were denied for 10 second blocks. 
 

 
Figure 14: Plot of the error between the odometry position versus the known 
GPS position over the time of a run where GPS solutions were denied for 10 
second blocks. 
 

B. VEHICLE SLIPPAGE 

 
Depending on the consistency of the snow being plowed, it is 
possible to incur such load on the plow as to cause the 
vehicles wheels to slip.  This can result in heading changes 
and negatively impacts performance.  We can detect slippage 
by comparing changes in distance reported by the GPS and 
odometry. To do this, we keep a list of previous positions and 
calculate the change in distance between the current position 
and a position measured one second before from both the 
odometry and GPS. If the difference between these two 
calculated distances is greater than an experimentally 
determined threshold, then we know that the wheels are 
slipping. When this happens, we reverse the robot a certain 
distance and then continue forward at a faster speed. 
 

C. CURRENT OVERLOAD 

 
With a heavy snow load the amount of current requested by 
the drive motors maybe higher than the current rating of the 
wires which carry the power to the motors.  This overload 
situation is handled first by a current limiting parameter in 
the configuration of the motor controller.  This is set to 120 
amps to prevent the motors' current carrying wires from 
overheating and causing potential damage to the wires or the 
motors. 
 

Two 50-amp circuit breakers were also installed as a form of 
redundancy.  These breakers are D-curve "slow blow" 
because electric motors can have an inrush current several 
times larger than their maximum sustainable current[15].  This 
slow blow capability allows the breakers to safeguard the 
drive system from any damaging overloads, but still allows 
for the high initial currents indicative of electric motors. 
 

D. SPEED CONTROL 

 
Redblade is capable of traveling much faster than the 
competition rules allow.  There are two methods used to 
ensure that the vehicle does not exceed competition speeds.  
The first is a software limit on the driver that communicates 
with the RoboteQ motor controller.  This limit does not allow 
motor speed values to be sent to the controller if they will 
cause excessive speed.  Velocity measurements obtained 
from the GPS receiver are the second method of speed 
control.  If the software receives a velocity that exceeds the 
speed limit, it decreases wheel speed proportionally to the 
amount of excess reported speed. 
 

 

VEHICLE DESIGN CHALLENGES 

 
A. ROBOT OPERATING SYSTEM (ROS) 

 
In the spring of 2013 team Redblade began converting all 
existing software and hardware drivers to be compatible with 
ROS, which is a “meta-operating system” that abstracts 
control of hardware and communication between different 
processes. The majority of our software was transferred into 
the protocol that ROS uses, although some hardware drivers 
that we use were already created by the ROS community, but 
even those were modified.  
 
The learning curve for ROS can be very steep initially but the 
community is very helpful and responsive to questions and 
issues. Although there was a large initial investment creating 
our drivers to work with ROS features, we are now able to 
develop much more quickly.  
 

B. OBSTACLE AVOIDANCE & LIDAR 

 
New to all teams this year is the obstacle in the middle of the 
snowfield. Because we have competed in other robotics 
competitions, like the ION Robotic Lawn Mower 
Competition and the IGVC, we are familiar with detecting 
and avoiding obstacles. Although we are comfortable using 
the Lidar and reading its data, we have never used it in a 
winter application before.  
 
Our major challenges in using the Lidar came from errors 
due to snow flying around in the air. Because of this added 
noise we were having trouble clustering enough points 
together to detect the obstacle. In order to rectify this we use 



 

a moving average filter over several frames of Lidar data in 
order to filter out any snowflakes.  
 
Another challenging issue we have had is that the position of 
the pole can drift up to 0.5 meters away  when we are 
traveling quickly at extreme angles ( > 45o) relative to the 
pole. This is caused by the fact that the robot is moving 
during the Lidar scan which gives a bias to the ranges. 
Thankfully we never travel at such an extreme angle during 
the competition so we don’t expect to see such extreme 
drifting. However, a small bit of error still remains due to 
movement and to compensate for that we average the 
estimated position of the pole over time. 
 

C. FOUR-WHEEL DRIVE 

 
Last year Redblade’s biggest mechanical problem was 
traction. Our robot was designed with caster wheels in the 
back instead of another set of NPC B81HT motors. Because 
of the angle of the plow, the robot experiences a great 
amount of lateral force on its front, which caused it to rotate 
around its set of front wheels, introducing huge heading error 
that the PID had to correct for. With our new set of motors 
we do not only have the ability to push more snow, but we 
have significantly greater lateral traction in the back, keeping 
the robot on a straight path when snow pushes on the angled 
plow. 
 
However, this solution did not come without a price. This 
extra set of motors required its own Roboteq and power 
supply, meaning we had to use our back up set of 24v 
batteries that we keep inside the robot as a normal supply to 
the second pair of motors. Additionally the robot draws much 
more current than normal because it is now skid-steer, 
meaning that the wheels must skid when turning since all of 
our axels are rigid. One problem that we rarely deal with is 
mechanical failure due to stress, but recently during normal 
testing on dry concrete a motor shaft sheared off cleanly. 
When testing on wet, icy, or snowy concrete the skid-steer 
behaves much more predictably with less stress on the motors 
and we do not expect to see this problem when competing.   
 
Skid steer and the errors it introduces have also caused us to 
have to remodel several parts of our software including our 
odometry calculations, PID, and motor controllers. 
 

D. EXTENDED KALMAN FILTER 

 
One of the challenges of developing this EKF was obtaining 
the dynamics and measurement models.  The calculation of 
the robot's position given the heading of the robot and the 
robot's velocity requires polar to Cartesian transformations, 
which are not linear equations.  To circumvent this problem, 
we developed linear equations to approximate this 
transformation using linearization. 
 

Another problem we faced was accounting for IMU bias. The 
IMU only gives an angular velocity which can give 
information about the heading in the robot's local coordinate 
fram. However, we need to know the robot's orientation in 
terms of North and East.  To estimate this bias, we created 
another linear equation in the EKF.  For each measurement 
update, the bias will be estimated based on the GPS position 
and the IMU angular velocity. 
 
Theoretically, the orientation and the position of the robot 
can be even further improved if we account for the Lidar 
readings and the pole positions in the EKF.  Another EKF 
was developed to account for these extra sensors to estimate 
the position of the poles in addition to the position and 
orientation of the robot.  However, due to time constraints, 
we couldn't thoroughly test this EKF and didn't incorporate it 
into the final design. 
 
COMMERCIALIZATION & IMPLEMENTATION 

 
Table 3 below is a detailed breakdown of the primary costs 
associated with the build of Redblade. 
 

Component Cost 

Projected Market 

Cost** 

80/20 Frame $1,500 $825 

Wireless router $50 $15 

E7P Optical Encoders $192 $56 

Polycarbonate $360 $180 

Batteries $660 $330 

Sheet of Steel (x2) $60 $34 

Computer Hardware $675 $200 

RoboteQ motor controller (x2) $990 $292 

NPC Robotics 24V right angle  

motors (x4) $1,800 $900 

MicroStrain IMU 3DM-GX-25 $1,500 $443 

Topcon HiPer Lite Plus System $25,000 $7,381 

Misc (wire, bolts, fasteners, etc.) $200 $110 

SICK LMS-200 LIDAR $5,000 $1,476 

Totals $37,987 $12,242 

Market Cost After Mark-up $18,363 

Profit to Manufacturer $6,121 

 

Table 3: The primary costs associated with the build of Redblade. 
 
The table above shows the total cost to produce Redblade in a 
market environment assuming a manufacturer can obtain 
parts for roughly 50% of their retail prices. The costs also 
take into account a depreciation of 10% per year for 



 

electronic components and a 10% increase in cost per year 
for metals (over a period of 5 years).  
 
A commercially available Redblade unit would be available 
with a permanently installed base station, only requiring a 
one-time survey of the property with the detachable GPS 
receiver in order to define the operating boundaries. If a 
movable tripod is used to hold the base station, a 15-minute 
recalibration is required every time the tripod is moved.  
 
The onboard software will automatically calculate an 
optimized path plan with adjustable settings like path 

overlap. Additionally, OmniSTAR[16] (a virtual base station) 
subscriptions are available to operate the robot without the 
base station, which have position accuracy within 10 
centimeters compared to the 2 centimeter accuracy of the 
local base station. Based on our testing, any navigation 
solution accurate within 15 cm would be sufficient for our 
EKF to correct reliably. 
 

CONCLUSIONS & RECOMMENDATIONS 

 
This iteration of Redblade is the most robust platform to date.  
It is able to function autonomously as a snowplow and also a 
lawnmower.  This ability has been achieved through a 
navigation sensor suite, including a DGPS receiver, IMU, 
and wheel encoders, an Extended Kalman filter, a PID-based 
control algorithm, and an in-house mechanical platform.  
Several failure modes have been taken into consideration and 
recovery actions have been implemented to ensure robust 
performance. 
 
The more long-term impact of this project is the valuable 
learning experience gained by the students working on the 
team.  Students learned trouble shooting, managing deadlines 
under a tight schedule, and interfacing with parts and supply 
sources.  They also learned specialized technical skills 
through this complicated project that required interfacing 
multiple components.  Additionally, Redblade has been an 
excellent outreach and promotional platform for Miami 
University's Engineering programs.  The Redblade team 
members contributed to numerous outreach activities both on 
campus. 
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